Exponential Functions

Lecture 33 Section 4.1

Robb T. Koether

Hampden-Sydney College

Mon, Mar 27, 2017

Reminder

Reminder

• Test #3 is this Friday, March 31.

Reminder

Reminder

- Test #3 is this Friday, March 31.
- It will cover Chapter 3.

Reminder

Reminder

- Test #3 is this Friday, March 31.
- It will cover Chapter 3.
- Be there.

Objectives

Objectives

- Learn (or review) the properties of exponential expressions.
- Learn the properties of exponential functions.
- Learn about the "natural" base.

Exponential Expressions and Functions

Definition (Integer Exponential Expression)

Let *b* be a positive real number and let *n* be a positive integer. Then

$$b^n = \underbrace{b \cdot b \cdot b \cdots b}_{n \text{ factors}}$$

Also, $b^0 = 1$ and

$$b^{-n}=\frac{1}{b^n}.$$

The number b is called the **base** of the expression. The number n is called the **exponent**.

Exponential Expressions and Functions

Definition (Rational Exponential Expression)

Let b be a positive real number and let $\frac{n}{m}$ be a rational number. Then

$$b^{n/m} = \left(\sqrt[m]{b}\right)^n = \sqrt[m]{b^n}.$$

Properties of Exponential Expressions

Properties of Exponential Expressions

The following properties hold for all bases a, b > 0 and all exponents x, y.

• Equality: if $b \neq 1$, then $b^x = b^y$ if and only if x = y.

Properties of Exponential Expressions

- Equality: if $b \neq 1$, then $b^x = b^y$ if and only if x = y.
- Products (same base): $b^x b^y = b^{x+y}$.

Properties of Exponential Expressions

- Equality: if $b \neq 1$, then $b^x = b^y$ if and only if x = y.
- Products (same base): $b^x b^y = b^{x+y}$.
- Products (same exponent): $a^x b^x = (ab)^x$.

Properties of Exponential Expressions

- Equality: if $b \neq 1$, then $b^x = b^y$ if and only if x = y.
- Products (same base): $b^x b^y = b^{x+y}$.
- Products (same exponent): $a^x b^x = (ab)^x$.
- Quotients (same base): $\frac{b^x}{b^y} = b^{x-y}$.

Properties of Exponential Expressions

- Equality: if $b \neq 1$, then $b^x = b^y$ if and only if x = y.
- Products (same base): $b^x b^y = b^{x+y}$.
- Products (same exponent): $a^x b^x = (ab)^x$.
- Quotients (same base): $\frac{b^x}{b^y} = b^{x-y}$.
- Quotients (same exponent): $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$.

Properties of Exponential Expressions

- Equality: if $b \neq 1$, then $b^x = b^y$ if and only if x = y.
- Products (same base): $b^x b^y = b^{x+y}$.
- Products (same exponent): $a^x b^x = (ab)^x$.
- Quotients (same base): $\frac{b^x}{b^y} = b^{x-y}$.
- Quotients (same exponent): $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$.
- Powers: $(b^x)^y = b^{xy}$.

Exponential Expressions and Functions

Definition (Exponential Function)

An **exponential function** is a function of the form

$$f(x) = b^x$$

for some base b > 0.

Properties of Exponential Functions

Properties of Exponential Functions

The following properties hold for all exponential functions.

• $b^x > 0$ for all x.

Properties of Exponential Functions

- $b^x > 0$ for all x.
- The *x*-axis is a horizontal asymptote of the graph.

Properties of Exponential Functions

- $b^x > 0$ for all x.
- The x-axis is a horizontal asymptote of the graph.
- The point (0, 1) lies on the graph.

Properties of Exponential Functions

- $b^x > 0$ for all x.
- The *x*-axis is a horizontal asymptote of the graph.
- The point (0, 1) lies on the graph.
- If b > 1, then

$$\lim_{x\to +\infty} b^x = +\infty \text{ and } \lim_{x\to -\infty} b^x = 0.$$

Properties of Exponential Functions

The following properties hold for all exponential functions.

- $b^x > 0$ for all x.
- The *x*-axis is a horizontal asymptote of the graph.
- The point (0, 1) lies on the graph.
- If b > 1, then

$$\lim_{x\to +\infty} b^x = +\infty$$
 and $\lim_{x\to -\infty} b^x = 0$.

If b < 1, then

$$\lim_{x\to +\infty} b^x = 0$$
 and $\lim_{x\to -\infty} b^x = +\infty$.

Graph of an Exponential Function (b > 1)

Graph of an Exponential Function (b < 1)

Graph of an Exponential Function (b < 1)

- Let $f(x) = b^x$ for some base b > 0.
- What is f'(x)?

The Natural Base e

$$f'(x) =$$

The Natural Base e

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The Natural Base e

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{b^{x+h} - b^x}{h}$$

The Natural Base e

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{b^{x+h} - b^x}{h}$$
$$= \lim_{h \to 0} \frac{b^x b^h - b^x}{h}$$

The Natural Base e

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{b^{x+h} - b^x}{h}$$

$$= \lim_{h \to 0} \frac{b^x b^h - b^x}{h}$$

$$= \lim_{h \to 0} b^x \left(\frac{b^h - 1}{h}\right)$$

The Natural Base e

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{b^{x+h} - b^x}{h}$$

$$= \lim_{h \to 0} \frac{b^x b^h - b^x}{h}$$

$$= \lim_{h \to 0} b^x \left(\frac{b^h - 1}{h}\right)$$

$$= b^x \cdot \lim_{h \to 0} \frac{b^h - 1}{h}.$$

The Natural Base e

• Note that $\lim_{h\to 0} \frac{b^h - 1}{h}$ is a constant.

- Note that $\lim_{h\to 0} \frac{b^h 1}{h}$ is a constant.
- For the right choice of b, that constant will be 1.

- Note that $\lim_{h\to 0} \frac{b^h 1}{h}$ is a constant.
- For the right choice of b, that constant will be 1.
- That choice is approximately 2.71828....

- Note that $\lim_{h\to 0} \frac{b^h 1}{h}$ is a constant.
- For the right choice of b, that constant will be 1.
- That choice is approximately 2.71828....
- We call that number e, the natural base.

Compound Interest

Compound Interest

Let P be the present value of an investment, t the duration (in years) of the investment, t the annual interest rate, t the number of compounding periods per year, and t0 the future value after t years. Then

$$B(t) = P\left(1 + \frac{r}{k}\right)^{kt}.$$

Continuous Compounding

Continuous Compounding

If the interest is compounded continuously, then the future value is

$$B(t) = Pe^{rt}$$
.